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We analyze closed one-dimensional chains of weakly coupled many level systems, by means of the so-called
Hilbert space average method �HAM�. Subject to some concrete conditions on the Hamiltonian of the system,
our theory predicts energy diffusion with respect to a coarse-grained description for almost all initial states.
Close to the respective equilibrium, we investigate this behavior in terms of heat transport and derive the heat
conduction coefficient. Thus, we are able to show that both heat �energy� diffusive behavior as well as
Fourier’s law follows from and is compatible with a reversible Schrödinger dynamics on the complete level of
description.
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I. INTRODUCTION

As a central problem of nonequilibrium thermodynamics,
heat conduction has been of vital interest since the beginning
of the 19th century. During his extensive investigations on
heat transport in solids, Fourier discovered, around 1807 �1�,
a proportionality between the temperature gradient �T and
the heat, respectively, energy current density in the material,

j = − � � T , �1�

where � is some material constant—the heat conductivity.
Concentrating on one-dimensional chains of interacting sub-
systems, the temperature gradient can be discretized as
��T�=�T /�L, where �T is the temperature difference be-
tween two adjacent subsystems and �L their distance. Intro-
ducing the current J=Aj through some area A, Fourier’s law
�1� can be rewritten as

J = − �th�T �2�

with �th=�A /�L. Instead of approaching a global equilib-
rium state with some temperature T, a solid, under some
external perturbation by a temperature gradient �introduced
by heat baths with different temperatures�, enters a local
equilibrium state only: the temperature may vary from one
macroscopically small but microscopically large part of the
system to the other. The heat transport itself is called normal
if the conductivity �th remains finite, whereas a diverging �th
indicates a ballistic transport. Having established a normal
diffusive behavior, all further efforts on the topic of heat
conduction in the last decades have been directed toward a
microscopic foundation of the above phenomenological law.

One of the first concepts addressing the occurrence of
regular heat conduction from a microscopic basis is the
Peierls-Boltzmann theory �2�. Essentially, Peierls proposed a
modified Boltzmann equation replacing classical particles by
quantized quasiparticles, the phonons. He was able to show
that in order to obtain normal heat conduction, an anharmo-

nicity in the interaction potential was necessary, associated
with the well-known Umklapp processes of phonon scatter-
ing in solids. Since quantized normal modes are treated here
as classical particles, i.e., as being always well localized in
configuration as well as momentum space, this approach
contains some conceptual shortcomings.

Another microscopic approach to heat conduction is the
famous Green-Kubo formula, derived on the basis of linear
response theory �3–5�. Thereby, the current is taken as the
response of the material to an external perturbative potential,
originally, the electromagnetic potential. By a direct mapping
of these ideas on thermal transport phenomena �perturbations
due to thermal gradients �6��, serious questions remain open,
since in this case it is not possible to define a proper potential
in the Hamiltonian of the system resulting in a temperature
gradient.

To account for the problem of defining a proper potential
for a thermal perturbation, there have been efforts to model
the system coupled to several heat baths in terms of an open
quantum system �7–9�. These methods reveal a normal trans-
port behavior even in very small quantum systems, but are
numerically challenging, especially for larger systems, since
the investigations are done in the Liouville space instead of
the Hilbert space.

All of the above microscopic approaches to heat conduc-
tion assume that the system under consideration is perturbed
by some external environment �e.g., a scenario, where a solid
is heated at one side cooled at the other�. As already pre-
dicted by Einstein in his considerations on Brownian motion
�10,11�, the diffusion constant appearing in a local equilib-
rium steady state scenario of heat conduction should equal
the decay constant for the relaxation from a nonequilibrium
state to the global equilibrium in the same system. In the
latter case, there is no further external perturbation involved.
In the same spirit, we will introduce yet another approach to
heat transport within quantum systems.

Recently, the relaxation behavior of small quantum sys-
tems has been considered within the theory of quantum ther-
modynamics �12–15�, calling for a direct solution of the
Schrödinger equation. Based on the Hilbert space average
method �HAM� �15–18�, the complicated Schrödinger dy-
namics of a multilevel system may be reduced to a set of
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simple rate equations. In the present paper, we will discuss
the application of HAM on heat conducting model systems.
Furthermore, we will discuss the connection of heat diffusive
behavior with energy diffusion and present a comparison of
the results of HAM with the full numerical solution of the
Schrödinger equation. The goal of the present investigation
is to show how heat, respectively, energy diffusive behavior
may emerge from first principles—here the Schrödinger
equation �19�.

II. SINGLE BAND MODEL

The class of systems we are going to analyze first is de-
picted in Fig. 1 and described by the Hamiltonian

Ĥ = �
�=1

N

Ĥloc��� + ��
�=1

N−1

V̂��,� + 1� . �3�

Here N identical subunits according to the same local Hamil-

tonian Ĥloc��� are assumed to have a nondegenerate ground
state and a band of n exited states each, equally distributed
over some band width �� such that the band width is small
compared to the local energy gap �E �see Fig. 1, ��
	�E ,�� in units of �E�. These subunits are coupled by an

energy exchanging next neighbor interaction V̂�� ,�+1�,
chosen to be a �normalized� random Hermitian matrix allow-
ing for any possible transition such as to avoid any bias. Our
results will turn out to be independent of the exact form of
this matrix. We choose the next neighbor coupling to be
weak compared to the local gap ��	�E ,� in units of �E�.
This way, the full energy is approximately given by the sum
of the local energies and those are approximately given by

�Ĥloc����	�EP�, where P� is the probability to find the �th
subsystem in its excited state. One of the big advantages of
the present model is the clear partition of the Hamiltonian in
a local and an interaction part, respectively. This partition
allows for a unique definition of both a local energy or even
a local temperature as well as a proper current. However,
note that the presented method itself does not need such a
special kind of model system but is in principle also appli-
cable to more general situations.

We now restrict ourselves to the single excitation sub-
space, i.e., all states with one subsystem excited �irrespective
of which state within the band�, all others in the ground state.

Let us introduce a set of projection operators P̂�,� in this
subspace, projecting out the set of states corresponding to the
�th subsystem occupying its excitation band, rather than its
ground state �these operators feature the unit operator of di-

mension n for the excited band of the �th system and other-
wise zeros�. Thus, the total system state is given by

�
� = �
�

P̂�,��
� = �
�

�
�� , �4�

where none of the �
�� is normalized individually. Further-
more, one may introduce also some standard transition op-

erators P̂�,� �unit operator at position �� ,���. According to

the properties of transition operators, we find P̂�,�P̂��,��
=����P̂�,�� and, hence,

P̂�+1,�P̂�,� = P̂�+1,�+1P̂�+1,�. �5�

Both, the local and the interaction part of the Hamiltonian �3�
in our reduced Hamiltonian model can now be written in
terms of these new operators as

Ĥloc��� = h�,�P̂�,�, �6�

V̂��,� + 1� = �v�,�+1P̂�,�+1 + v�+1,�P̂�+1,�� , �7�

with a local diagonal Hamiltonian matrix h�,� and a Hermit-
ian interaction matrix v�,�+1=v�+1,�

† .

III. TIME EVOLUTION

The dynamics of the model system defined by the Hamil-
tonian �3�, respectively, �6� and �7� is governed by the
Schrödinger equation. Here we will mainly be interested in a
coarse-grained description suppressing the information about
the state index within the respective bands, concentrating,
e.g., on the total probability of occupying a band or not, only.

After transforming the Hamiltonian to the interaction pic-
ture, we perform a second order Dyson expansion of the time
evolution for the short time step �

�
���� 	 
1̂ −
i



Û�1� −

1


2Û�2���
�0�� = D̂�
�0�� , �8�

with the two time evolution operators

Û�1���� = �
0

�

d��V̂���� , �9�

Û�2���� = �
0

�

d���
0

��
d��V̂����V̂���� . �10�

A pertinent quantity in the context of heat conduction will
be the change of local energy in one subunit � in the time
interval � given by the probability

P���� = �
�����
����� = �
����P̂�,�P̂�,��
���� . �11�

Using the short time evolution operator �8�, one gets

P���� = �
�0��D̂†P̂�,�P̂�,�D̂�
�0�� ª �
�0��Â��
�0�� .

�12�

For simplicity, we suppress in the following the explicit no-
tation of the time dependence of the operators, states, and

FIG. 1. Heat conduction model: N coupled subunits with ground
level and band of n equally distributed levels ��E=1�. Black dots
indicate the initial state used.
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probabilities. According to the definition of D̂, we find in
second order

Â� = P̂�,�P̂�,� +
i



Û�1�P̂�,�P̂�,� −

i



P̂�,�P̂�,�Û�1�

−
1


2 P̂�,�P̂�,�Û�2� −
1


2 �Û�2��†P̂�,�P̂�,�

+
1


2Û�1�P̂�,�P̂�,�Û�1�. �13�

�Note that Û�1� is Hermitian due to the hermiticity of the
interaction.�

Due to the additive representation of the interaction �7�
and the definition of the first oder time evolution operator
�9�, one may find the analogous off-diagonal block form for
the first order time-evolution operator

Û�1� = �
�=1

N−1

�u�,�+1
�1� P̂�,�+1 + u�+1,�

�1� P̂�+1,�� . �14�

The time dependent coefficients u contain the integration of
the interaction matrix v over �� �cf. �7��.

Unfortunately, the second order time-evolution operator
�10� has a more complicated structure in terms of the transi-
tion operators. Introducing the interaction �7� into �10� �using
the property �5��, one finds

Û�2� = �
0

�

d���
0

��
d���

�

�v�,�+1����v�+1,�����P̂�,�

+ v�+1,�����v�,�+1����P̂�+1,�+1

+ v�,�+1����v�+1,�+2����P̂�,�+2

+ v�+1,�����v�,�−1����P̂�+1,�−1� . �15�

This operator decomposes into a diagonal and an off-

diagonal part Û�2�= Ûdiag
�2� + Ûoff

�2� with

Ûoff
�2� = �

�

�u�−1,�+1
�2� P̂�−1,�+1 + u�+1,�−1

�2� P̂�+1,�−1� ,

Ûdiag
�2� = �

�

u�,�
�2� P̂�,�, �16�

and a suitable definition of the coefficients u�2�. By using �5�,
one may convince oneself of the operator identities

Û�1�P̂�,� = �P̂�−1,�−1 + P̂�+1,�+1�Û�1�, �17�

P̂�,�Ûoff
�2� = Ûoff

�2��P̂�+2,�+2 + P̂�−2,�−2� , �18�

P̂�,�Ûdiag
�2� = Ûdiag

�2� P̂�,�. �19�

By means of the expansion of the time-evolution operators in
terms of projectors and transition operators and those opera-
tor identities one is able to reformulate �13� by exchanging
time-evolution operators and projectors as

Â� = + P̂�,�P̂�,� +
i



�P̂�−1,�−1 + P̂�+1,�+1�Û�1�P̂�,�

−
i



P̂�,�Û�1��P̂�−1,�−1 + P̂�+1,�+1�

+
i



P̂�−1,�−1�Û�1��2�P̂�−1,�−1 + P̂�+1,�+1�

+
i



P̂�+1,�+1�Û�1��2�P̂�−1,�−1 + P̂�+1,�+1� −

i



P̂�,�

��Ûdiag
�2� + �Ûdiag

�2� �†�P̂�,� −
i



P̂�,�Ûoff

�2��P̂�−2,�−2

+ P̂�+2,�+2� −
i



�P̂�−2,�−2 + P̂�+2,�+2��Ûoff

�2��†P̂�,�.

�20�

Since P�= �
�Â��
� is a probability, we get, furthermore, the

normalization condition ���
�Â��
�=1. This condition is al-
ready fulfilled in the zeroth order of all probabilities

���
�P̂�,�
2 �
�=1. Due to this fact the sum over all other or-

ders has to vanish. All first order terms together cancel out
each other directly. Remaining second order terms lead to the
additional conditions

�
�−1�Ûoff
�2� + �Ûoff

�2��†�
�+1� = �
�−1��Û�1��2�
�+1� ,

�
��Ûdiag
�2� + �Ûdiag

�2� �†�
�� = 2�
���Û�1��2�
�� . �21�

IV. ENERGY TRANSPORT IN THE SINGLE BAND
MODEL

According to �11�, the expectation value of the operator
�20� defines the time dependence of the probability P�. We
approximate this expectation value by an average over some
appropriate Hilbert space compartment—say the mean of the
expectation value over all reachable states—called the Hil-
bert space average 
¯�.

The Hilbert space average method �HAM� is, in essence,
a technique to guess the value of some quantity defined as a
function of the full system state �
� if �
� itself is not known
in full detail. Here it is used to produce a guess for the

expectation values �
�Â��
� if the only information about �
�
is the given set of initial expectation values �
�P̂�,�

2 �
�
= P��0�. Such a statement naturally has to be a guess, since
there are, in general, many different �
� that are in accord
with the given set of P��0� but possibly produce different

values for �
�Â��
�. Thus, the key question for the reliability

of this guess is whether the distribution of the �
�Â��
� pro-
duced by the respective set of �
�’s is broad or whether al-

most all those �
�Â��
� are approximately equal. It can be

shown that if the spectral width of Â� is not too large and Â�

is high-dimensional, almost any �
� yields an expectation

value close to the mean of the distribution of the �
�Â��
�,
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and thus, the HAM guess will be reliable �15�. To find that
mean, one has to average with respect to the �
�’s. This is
called a Hilbert space average and is denoted as

P���� = �
�0��Â��
�0�� 	 
�
�Â��
�� . �22�

Such averages are well known and derived in full detail in

Refs. �15,17�. For any Hermitian operator Â, one finds


�
��Â�
��� =� �
��
��
d�

Tr��Â� � = �

0 otherwise,
� �23�

with the partial traces in the respective subspace � with di-
mension d� �note �
� �
���1�.

Plugging in the operator Â� from �20� into the probability
�12�, approximating the expectation values by the Hilbert
space average and, furthermore, using the operator identities
�21�, one finds for the probability

P���� = �
��
�� −
2


2 
�
���Û�1��2
�
���

+
1


2 
�
�+1��Û�1��2
�
�+1��

+
1


2 
�
�−1��Û�1��2
�
�−1�� . �24�

Furthermore, using �23� with the dimension d�=n in each
subspace, we end up with the probability

P���� = �
��
�� −
2


2

�
��
��
n

Tr���Û�1��2�

+
1


2

�
�+1�
�+1�
n

Tr�+1��Û�1��2�

+
1


2

�
�−1�
�−1�
n

Tr�−1��Û�1��2� . �25�

A first order approximation of these traces is straightfor-
ward and done like in the derivation of Fermi’s Golden Rule
�cf. �15,17��, getting here

Tr���Û�1��2� 	
2�
�2n2�

��
. �26�

Defining the decay constant

� ª

2��2n


��
�27�

and remembering that �
� �
��= P��0�= P�, one eventually
finds

P���� = P� − ��2P� − P�+1 − P�−1�� . �28�

The above approximation for the trace of the square of the
time-evolution operator �26� is only valid within a small time
interval as for Fermi’s Golden Rule implying the two condi-
tions �see �17��

�

��
n �

1

2
,

�2

��2n 	 1. �29�

As long as these conditions are fulfilled, the given second
order time-evolution approximation is valid and one may
iterate �28� in the limit of � being extremely small to find the
rate equation for the system. Since the system is a finite
chain of N subsystems, we get a slightly different equation
for the first and the last system in the chain. The complete
system of differential equations, thus, reads �2���N−1�

dP1

dt
= − ��P1 − P2� , �30�

dP�

dt
= − ��2P� − P�+1 − P�−1� , �31�

dPN

dt
= − ��PN − PN−1� . �32�

Under the conditions �29�, the system should follow this rate
equation thus establishing a statistical behavior from pure
Schrödingerian dynamics.

From �31�, one finds that the change of the probability in
the �th subsystem only depends on its left and right neigh-
bor. Therefore, if the above criteria �29� are fulfilled, so that
the system indeed follows the respective rate equation, we
may concentrate on the minimal model of two subunits only,
without loss of generality. Because of the special next neigh-
bor relationship of the above dynamical equation, the results
of the minimal model can be generalized to the behavior of a
chain of a large number of such subsystems.

V. NUMERICAL RESULTS

That such a behavior as described in Sec. IV is, indeed,
feasible can be demonstrated by a comparison of the solution
of the above rate equation with the exact solution of the full
system Schrödinger equation. For this reason, we consider a
model consisting of three subunits with n=500 levels each in
the exited band of width ��=0.05 coupled by a random en-
ergy exchanging next neighbor coupling �=5�10−5. For
these parameters, the two criteria �29� are fulfilled. Initially,
we start with an excitation in the first system, all other sys-
tems being in their ground state, observing the redistribution
of energy. The comparison for N=3 in Fig. 2 shows a very
good accordance between the solutions of these two different
dynamical descriptions—both the solution of the full
Schrödinger equation as well as the rate equations �30�–�32�.
Furthermore, Fig. 3 shows the same comparison for a chain
of increased length N=5. Again, one finds a very good ac-
cordance.

To investigate the accuracy of the HAM for, e.g., the
probability in the first system P1�t�, we introduce D1

2, as the
time-averaged quadratic deviation of the exact �Schrödinger�
result for P1�t� from the HAM prediction
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D1
2 =

1

5�
�

0

5�

�P1
HAM�t� − P1

exact�t��2dt . �33�

To check the validity of HAM with respect to different pure
initial states, we have computed D1

2 for 15 000 equally dis-
tributed initial states, all corresponding to a two subunit sys-
tem with one subunit in the upper band and the other subunit
in its ground state. The results are condensed into the histo-
gram shown in Fig. 4. Obviously, almost all initial states lead
to approximately the same small deviation. Thus, a good
agreement of HAM with the exact result may safely be ex-
pected regardless of HAM being a best guess only. �In fact,
this is the essence of thermodynamical statements: They hold
typically, but not always.�

Furthermore, to analyze how big this “typical deviation”
is, we have computed D1

2 for a N=3 system with the first
subunit initially in an arbitrary excited state, for different
numbers of states n in the bands. As shown in Fig. 5, the
deviation scales like 1/n with the band size, i.e., vanishes in
the limit of high-dimensional subunits. This behavior does
not come as a complete surprise since it has theoretically
been conjectured and numerically verified in the context of
equilibrium fluctuations of non-Markovian systems �13,15�.
The inset of Fig. 5 shows that D1

2 goes down also with in-
creasing number of subunits N but then levels off. Alto-

gether, the new method HAM appears to be applicable even
down to moderately sized subsystems, i.e., not too few levels
n in the upper band. Thus, as follows from Fig. 4, a system
with only a single excited level would lead to large devia-
tions from the rate equation behavior.

Using, instead of pure initial states, mixed states �which
are typical in the context of thermodynamical phenomena�, a
drastic further reduction of D2 can be expected. This is due
to the fact that pure state fluctuations may cancel partially if
added together.

VI. ENERGY DIFFUSION CONSTANT

We concentrate in the following on a model �cf. Fig. 1�
for which the criteria �29� are fulfilled. In essence, the used
subunits should be weakly coupled to fulfill the given crite-
ria, i.e., the interaction between the subunits has to be small
compared to the local energy. The dynamical behavior is
then approximately governed by the rate equations
�30�–�32�. As argued in the last paragraph of Sec. IV, it is
enough to consider a minimal model of N=2 subunits, with-
out loss of generality.

This minimal system behaves according to the rate equa-
tion �30� with the decay constant �27�. The respective equa-
tion for the second system is simply obtained by an exchange
of the indices in �30�.

In order to compute the energy diffusion constant in the
given model system, we have to consider the energy current
inside the system. The energy current is defined by the

FIG. 2. Probability to find the excitation in the �=1, 2, 3 sys-
tem. Comparison of the HAM prediction and the exact Schrödinger
solution �dots�. �N=3,n=500,�=5�10−5 ,��=0.05�

FIG. 3. Probability to find the excitation in the �=1, 2, 3, 4, 5
system. Comparison of the HAM prediction and the exact
Schrödinger solution �dots�. �N=5,n=500,�=5�10−5 ,��=0.05�.

FIG. 4. Deviation of HAM from the exact solution �D1
2�1 least

squares� for 15 000 equally distributed states �N=2,n=500�.

FIG. 5. Deviation of HAM from the exact solution �D1
2 least

squares�: dependence of D1
2 on n for N=3. Inset: dependence of D1

2

on N for n=500.
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change of the internal energy U� in the two subunits

J1,2 =
1

2

dU1

dt
−

dU2

dt
� . �34�

The total internal energy in such a subunit is given by the
probability to be in the excited band of the subunit times the
width of the energy gap, U�=�EP�. Thus, we may reformu-
late the current due to the change of the probability being in
the excited band as

J1,2 =
�E

2

dP1

dt
−

dP2

dt
� . �35�

The change of the probabilities in time are given by the rate
equation �30� so that

J1,2 = − ��E�P2 − P1� . �36�

For a larger system with N�2, the consideration is quite
similar and the result, in principle, the same. Of course, the
current definition is a little bit more complicated, since the
energy relaxation in a central system leads to a current to
both sides. But by properly splitting up the result into a cur-
rent to the left, respectively, the right system leads to the
same dependence of the current between subunit � and �
+1 on the respective probability difference.

According to �36�, the current is a linear function of the
probability difference �gradient�, respectively, energy differ-
ence (gradient) inside the system. This refers to a statistical
behavior since energy diffuses through the system only due
to the energy distribution in the system. Therefore, we may
extract the energy diffusion constant from the above equa-
tion, identifying the parameter � with the transport coeffi-
cient given in �27�. This energy diffusion constant only de-
pends on the coupling strength of the subunits � and on the
state density of the excited band n /��. �Note that in the
model at hand, the energy gradient is discretized as an energy
difference, because of the discrete structure of the model, as
already stated in Sec. I �cf. �2��.�

VII. HEAT TRANSPORT IN A MULTIBAND MODEL

Up to now we have restricted ourselves to the energy
transport within the system on the route from a nonequilib-
rium initial state to a global equilibrium final state. Of
course, this could be translated into heat transport insofar as
heat is nothing but thermal energy. However, the states far
away from equilibrium preclude a straightforward interpreta-
tion: In the example of Fig. 2, we have prepared the system
initially in a state with the first system completely in its
exited band, all others being in their ground states and, in-
deed, the system behaves statistically. By a simple translation
to temperatures by fitting to a Boltzmann distribution, this
initial state would show a really strange temperature profile:
One finds the first system at negative temperature �com-
pletely excited, i.e., inversion and, therefore, negative, infi-
nite temperature�, all others at zero temperature. Nobody
would expect a normal heat conduction behavior in such a
far from equilibrium situation. Nevertheless, even in this
case we have confirmed a statistical relaxation of energy �see
Fig. 2�.

To investigate a situation more appropriate for heat trans-
port, we should use an initial state already near the final
global equilibrium state, with only a small temperature gra-
dient. We first start with a pure state observing the decay of
such a state by solving the Schrödinger equation only. Fi-
nally, one may sum up over many pure state trajectories find-
ing the time evolution for an initially mixed state. But with a
temperature diffusive behavior already for pure states, we are
sure to find it also for an initially mixed state, even with
reduced fluctuations.

Let us restrict ourselves in the following to only two
subunits—the proper minimal model as argued before. How-
ever, let us immediately generalize the model to a more com-
plicated structure with more than one excitation band per
subunit. The results of HAM from the above considerations
is valid also for this more general situation. The model sys-
tem is shown in Fig. 6. The band index i is reserved for the
left system, whereas j belongs to the right system. We take a
product state �
�= �
1� � �
2� as the respective initial state for
all further investigations. For the single subsystem states, we
choose a quasithermal state with temperature ��, i.e., a su-
perposition of states according to the Boltzmann distribution.
Here, we use the term “quasi” to label this special group of
pure states, even if it is not a mixed state as is usual for
thermal states. Nevertheless, the occupation probability of
the energy eigenstates refers to the Boltzmann distribution.
Thus, a mixture of many of such quasithermal pure states
may lead to the usual thermal state. Furthermore, we treat the
bands as quasidegenerate since the band width is much
smaller than the gap ��	�E. Thus, the levels inside each
band are equally occupied according to the temperature ��.
The probability distribution of the first subsystem depending
on the band energy Ei and the appropriate number of states ni
in the band is therefore given by

P1�Ei� =
nie

−�1Ei

Z��1�
, �37�

with the partition function Z��1�. The second subsystem dis-
tribution is obtained simply by exchanging i by j and the
respective quantities of the second subsystem.

The important quantity for all further considerations is the
probability distribution of the whole system. Since the total
state is a product state the probability distribution of the

FIG. 6. Heat conduction model with more exited bands: each
band consists n equally distributed �N=2 subunits�.
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complete system state, Pij is simply the product of the single
probabilities

Pij =
nie

−�1Ei

Z��1�
nje

−�2Ej

Z��2�
. �38�

However, it is convenient here to use a new set of coordi-
nates for the combined spectrum in terms of the mean energy
E of a band and some energy displacement E

E ª Ei + Ej, E ª

1

2
�Ei − Ej� . �39�

�All energies, also E and E, are measured in units of �E.� To
support intuition, we show both sets of coordinates in Fig. 7:
The full spectrum �black bands� can either be characterized
in terms of the single subsystem spectra �Ei ,Ej� or by �E ,E�.
The latter coordinates appear as a 45° rotation of the original
ones.

Introducing a small temperature difference �T around the
mean temperature T so that �1/2= �kB�T±�T /2��−1 and trans-
forming to the new parameters �39�, one finds the probability
ability distribution

P�E,E� =
n�E,E�

Z��1�Z��2�
exp
−

�ET − E�T�
kB�T2 − ��T/2�2�

� �40�

with the number of states n�E ,E� in the band �E ,E�. Further-
more, in order to get a near equilibrium situation, the tem-
perature gradient �T has to be very small in comparison to
the mean temperature �T	T. Therefore, we expand the ex-
ponential function in �40� in terms of �T finding in first
order

P�E,E� 	
n�E,E�e−E/kBT

Z2�T�

1 +

E
kBT2�T� , �41�

where the product of partition functions has also been ap-
proximated in first order of the temperature gradient �T by
Z��1�Z��2�	Z�T�Z�T�=Z2�T�.

Again, the important quantity is the energy current be-
tween the two subsystems. The total energy in the first sub-
unit is now given by U1=�iEiPi, where Pi is the time depen-
dent probability distribution in the first system. To get the
respective first system probability distribution Pi from the
time dependent full system probability distribution Pij, we
have to trace over the second subsystem by summing over j,
finding U1=�ijEiPij. According to this total energy in sub-
system 1, the current along the chain reads

J =
1

2�
ij

Ei

dPij

dt
− Ej

dPij

dt
� , �42�

or, switching to the new parameters �cf. �39��,

J = �
E,E

E d

dt
P�E,E� . �43�

For a single band model, the sum over E would break down
and we recover the result �35�.

The change of the probability P�E ,E� is again described
by the rate equation according to the HAM. Since the com-
plete model decomposes into several energy subspaces, the
derivation is essentially just as given in Sec. IV. The respec-
tive energy transport coefficient results as a more compli-
cated form depending on the band it belongs to ��
=��E ,E ,E���. However, we require that � is symmetric un-
der the exchange of E and E�, since the energy transport from
system 1 to system 2 should be as good as in the reverse
direction. Therefore, we end up with the HAM rate equation

dP�E,E�
dt

= − �
E�

��E,E,E���P�E,E� − P�E,E��� . �44�

The fact that � depends on the respective band is already
obvious from �27�, which depends on the state density of the
band. Plugging in the rate equation �44� into the current �43�,
we find

J = − �
E,E,E�

E ��E,E,E���P�E,E� − P�E,E��� . �45�

Again, the current is simply a function of the actual state.
For a short time step, we may use the first order approxi-

mation of the “thermal” initial state �41�. Since we are sum-
ming over E and E�, the zeroth order terms according to �41�
will cancel. The remaining first order part

J = − �
E,E,E�

��E,E,E��
kBT2

e−E/kBT

Z2�T�
�n�E,E�E2 − n�E,E��EE���T

�46�

gives a heat current proportional to the temperature differ-
ence �T. By comparing this current with Fourier’s Law �2�,
one can extract the heat conductivity coefficient as

FIG. 7. Alternative scheme to depict the complete multiband
spectrum: individual spectra of the two on the Ei ,Ej axes, respec-
tively; transformation to the new parameters �E ,E�; black bands
indicate the complete spectrum. Examples: �E ,E�= �1,−1/2� are
states, where the first system is in its first band, the second one in its
ground state, �E ,E�= �2,0� are states, where both systems are in the
first excited band, etc.
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�th = �
E,E,E�

��E,E,E��e−E/kBT

kBT2Z2�T�
�n�E,E�E2 − n�E,E��EE�� ,

�47�

a quantity depending only on parameters of the respective
model system and on temperature. This is a very general
formula for the heat conductivity derived from HAM, valid
for the class of model systems depicted in Fig. 6 with an
arbitrary number of bands.

VIII. HEAT TRANSPORT COEFFICIENT

Let us return in the following to the single band model as
shown in Fig. 1, with the partition function of a single �n
+1�-level subsystem Z�T�=1+n exp�−�E /kBT�. In this case
HAM leads to the unique energy diffusion constant
��E ,E ,E��=� �see �27��. Furthermore, in this single band
model, only the energy band E=1�E contributes to the con-
ductivity �th, since for all other bands all possible E param-
eters are zero �cf. Fig. 7�. There are two possible values for
the band E=�E, namely E= ±�E /2 and the number of levels
in these two subbands are equal n��E ,�E /2�=n��E ,
−�E /2�=n, due to the construction of the model. One thus
gets for the conductivity �47�

�th =
2�kB�2n


��

ne−�E/kBT

�1 + ne−�E/kBT�2
 �E

kBT
�2

. �48�

The dependency of the transport coefficient �th on tem-
perature is displayed in Fig. 8. It roughly looks as expected
for typical isolating solids. There is, however, no �T3 behav-
ior for small temperatures, but note that this is only to be
expected for three-dimensional crystal lattices with a linear
phonon dispersion relation for small momenta. The exponen-
tial behavior for small temperatures �exp�−1/T� results from
the gap in the system and is difficult to treat for small tem-
peratures since it is an essential singularity �typical for sys-
tems with an energy gap�. Furthermore, we find a �T−2 be-
havior rather than the usual �T−1 behavior in the high
temperature limit. Again, the usual �T−1 is no rigorous gen-
eral result, Peierls only states that the exponent should be
between −1 and −2.

By introducing the heat capacity, the above result for the
heat conduction coefficient can further be simplified. Starting
with the canonical partition function of a single subunit Z
=1+ne−��E and the definition of the heat capacity in terms of
the partition function

c =
1

kBT2

�2ln Z

��2 , �49�

one finds for the heat capacity of one subunit

c = kB
ne−�E/kBT

�1 + ne−�E/kBT�2
 �E

kBT
�2

. �50�

From a comparison with �48� one derives

�th =
2��2n


��
c = �c , �51�

i.e., the heat conductivity is given by the energy diffusion
constant � multiplied by the heat capacity c of a single sub-
unit.

IX. CONCLUSION

Rather than considering heat conduction for a system
coupled to two heat baths with different temperatures in a
stationary local equilibrium state, we have studied the time
evolution of a closed one-dimensional chain of weakly
coupled many level systems. By an application of the new
Hilbert space average method �HAM�, we have been able to
directly address a coarse-grained description. On this level of
description, the effective dynamics can be shown to be dif-
fusive allowing us to derive a theoretical expression for the
energy diffusion coefficient � from first principles
�Schrödinger equation�. Furthermore, two conditions have
been established which could help to classify whether a
given model should show a statistical diffusive behavior or
not.

The approximation involved �mainly the replacement of
exact expectation values by a Hilbert space average� has
been tested by a numerical comparison of the derived rate
equation and the exact Schrödinger equation. Surprisingly,
we have found for the present model system that energy
diffusion occurs right from the start and already far from
equilibrium.

For an initial quasithermal state featuring a small but fi-
nite temperature gradient, we have been able to find a normal
heat conducting behavior in terms of a finite heat conductiv-
ity �th. Even for a more complicated model system �several
bands per subunit� it was possible to derive a theoretical
expression for the transport coefficient in terms of the param-
eters of the Hamiltonian. Finally, a reformulation of the
transport coefficient has led to a connection with the energy
transport coefficient and the heat capacity.

What impact do those results for our “design model” have
on real physical systems? For an application of HAM one
has to organize the system as a “grain structure” of weakly
coupled subunits. Then, for the emergence of normal trans-
port, the local bands and their couplings that mediate the
transport should obey the criterion �29� individually. If this

FIG. 8. Heat conductivity �48� over temperature for a system
with n=500,��=0.05, and �=5�10−5.
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can be established, HAM predicts that energy will diffuse
from subunit to subunit.

It has long since been appreciated that coarse graining
�i.e., tracing out irrelevant degrees of freedom� may change
the effective dynamical laws even qualitatively. An obvious
example is encountered when some accelerated electron in a
solid transfers energy and momentum to vibrational degrees
of freedom thus giving rise to particle transport. For the ori-
gin of heat transport in insulators, a correspondingly simple
picture seems to be missing though.

Here we have introduced a specific model class for which
such a concept of information reduction can easily be incor-
porated. We thus have been able to clearly specify the con-
ditions under which the resulting effective dynamics can be
characterized as normal energy diffusion. Irreversibility and
thermal resistance are thus traced back to a “reduced descrip-
tion”: “In reality” the full dynamics is still controlled by the
Schrödinger equation, as has explicitly been checked here for
still small enough total quantum systems.

The desired structure may be achieved by coarse-graining
periodic systems like spin chains, crystals, etc., into entities

containing many elementary cells and taking the mesoscopic
entities as the subunits proper and the effective interactions
between the entities as the couplings. Increasing the “grain
size” will result in higher state densities within the subunits
and relatively weaker couplings such that above a certain
minimum grain size the criteria �29� will eventually be ful-
filled. In this way, a qualitatively new type of dynamical
behavior can be seen to evolve as the observational level
becomes more and more coarse grained.

Of course, the resulting subunits cannot generally be ex-
pected to feature the same gapped spectral structure as our
design model. But HAM should be applicable also to more
realistic systems, and work in that direction is under way.

ACKNOWLEDGMENTS

We thank H.-P. Breuer, M. Hartmann, M. Henrich, Ch.
Kostoglou, H. Michel, H. Schmidt, M. Stollsteimer, and F.
Tonner for fruitful discussions. Financial support by the
Deutsche Forschungsgesellschaft is gratefully acknowl-
edged.

�1� J. Fourier, The Analytical Theory of Heat, translated by Alex-
ander Freeman �Dover, New York, 1955�.

�2� R. E. Peierls, Quantum Theory of Solids �Clarendon Press,
Oxford, 2001�.

�3� R. Kubo, J. Phys. Soc. Jpn. 12, 570 �1957�.
�4� R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II:

Nonequilibrium Statistical Mechanics, 2nd ed., Solid-State
Sciences No. 31 �Springer, Berlin, 1991�.

�5� H. Mori, Phys. Rev. 115, 298 �1959�.
�6� J. M. Luttinger, Phys. Rev. 135, A1505 �1964�.
�7� K. Saito and S. Miyashita, J. Phys. Soc. Jpn. 71, 2485 �2002�.
�8� M. Michel, M. Hartmann, J. Gemmer, and G. Mahler, Eur.

Phys. J. B 34, 325 �2003�.
�9� M. Michel, J. Gemmer, and G. Mahler, Physica E �Amster-

dam� 29, 129 �2005�.
�10� A. Einstein, Ann. Phys. 17, 549 �1905�.
�11� A. Einstein, Z. Elektrochem. Angew. Phys. Chem. 14, 235

�1908�.
�12� J. Gemmer, A. Otte, and G. Mahler, Phys. Rev. Lett. 86, 1927

�2001�.
�13� P. Borowski, J. Gemmer, and G. Mahler, Eur. Phys. J. B 35,

255 �2003�.
�14� M. J. Henrich, M. Michel, M. Hartmann, G. Mahler, and J.

Gemmer, Phys. Rev. E 72, 026104 �2005�.
�15� J. Gemmer, M. Michel, and G. Mahler, Quantum Thermody-

namics: Emergence of Thermodynamical Behavior within
Composite Quantum Systems, Lecture Notes in Physics, Vol.
657 �Springer, Berlin, 2004�.

�16� J. Gemmer and G. Mahler, Eur. Phys. J. B 31, 249 �2003�.
�17� J. Gemmer and M. Michel, Physica E �Amsterdam� 29, 136

�2005�.
�18� J. Gemmer and M. Michel, Europhys. Lett. �to be published�.
�19� M. Michel, G. Mahler, and J. Gemmer, Phys. Rev. Lett. 95,

180602 �2005�.

APPLICATION OF THE HILBERT SPACE AVERAGE … PHYSICAL REVIEW E 73, 016101 �2006�

016101-9


